Ryan Swanstrom:

The next post in the BigML Machine Learning Throwdown.

Originally posted on The Official Blog of BigML.com:

We’re taking this throwdown to the level of a friendly athletic competition

In the third post of the series, we looked at the types of models supported by each service. While some are useful for understanding your data, the primary goal of many machine learning models is to make accurate predictions from unseen data. Say you want to sell your house but you don’t know how much it is worth. You have a dataset of home sales in your city for the past year. Using this data, you train a model to predict the sales price of a house based on its size and the year it was built. Will this model be useful for predicting how much your own house will sell for? In this post, I will discuss how a model’s prediction abilities are evaluated, the results of comparing models from each service, and some general observations about making…

View original 1,240 more words

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s